miércoles, 22 de febrero de 2017

Binomio de suma al cubo

Un binomio al cubo (suma) es igual al cubo del primero
 más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.
(a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3
(x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 3+ 33 =
= x3 + 9x2 + 27x + 27



Binomio de resta al cubo

Un binomio al cubo (resta) es igual al cubo del primero 
menos el triple del cuadrado del primero por el segundo más el triple del primero por el cuadrado del segundo, menos el cubo del segundo.
(a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3
(2x − 3)3 = (2x)3 − 3 · (2x)2 ·3 + 3 · 2x· 32 − 3=
= 8x 3 − 36 x2 + 54 x − 27


Ejemplos

1(x + 2)3 = x3 + 3 · x2 · 2 + 3 · x · 2+ 23 =
= x3 + 6x2 + 12x + 8
2(3x − 2)3 = (3x)3 − 3 · (3x)2 · 2 + 3 · 3x · 22 − 23 =
= 27x 3 − 54x2 + 36x − 8
3(2x + 5)3 = (2x)3 + 3 · (2x)2 ·5 + 3 · 2x · 52 + 53 =
= 8x3 + 60 x2 + 150 x + 125

Producto de binomios con término común[editar]

Dos binomios con un término común[editar]


Ilustración gráfica del producto de binomios con un término común.
Para efectuar un producto de dos binomios con término común se tiene que identificar el término común, en este caso x, luego se aplica la fórmula siguiente:

Ejemplo:

Tres binomios con término común

Fórmula general:

Binomios con término común

Fórmula general:
xn + (suma de términos no comunes agrupados de uno en uno)xn-1 + (suma de términos no comunes agrupados de dos en dos)xn-2 +… + (producto del número de términos)

Producto de dos binomios conjugados[ed


Producto de binomios conjugados.
Dos binomios conjugados se diferencian solo en el signo de la operación. Para su multiplicación basta elevar los monomios al cuadrado y restarlos (obviamente, un término conserva el signo negativo), con lo cual se obtiene una diferencia de cuadrados.
Ejemplo:
Agrupando términos:
A este producto notable también se le conoce como suma por la diferencia.
  • En el caso ,n 1 aparecen polinomios.

Cuadrado de un polinomio[editar]


Elevación de un trinomio al cuadrado de forma gráfica.
Para elevar un polinomio de cualquier cantidad de términos se suman los cuadrados de cada término individual y luego se añade el doble de la suma de los productos de cada posible par de términos.
Ejemplo:
Multiplicando los monomios:
Agrupando términos:
Luego:
Romper moldes
.n 2





















No hay comentarios:

Publicar un comentario