Binomio de suma al cubo
Un binomio al cubo (suma) es igual al cubo del primero
más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.
(a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3
(x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 =
= x3 + 9x2 + 27x + 27
Binomio de resta al cubo
Un binomio al cubo (resta) es igual al cubo del primero
menos el triple del cuadrado del primero por el segundo más el triple del primero por el cuadrado del segundo, menos el cubo del segundo.
menos el triple del cuadrado del primero por el segundo más el triple del primero por el cuadrado del segundo, menos el cubo del segundo.
(a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3
(2x − 3)3 = (2x)3 − 3 · (2x)2 ·3 + 3 · 2x· 32 − 33 =
= 8x 3 − 36 x2 + 54 x − 27
Ejemplos
1(x + 2)3 = x3 + 3 · x2 · 2 + 3 · x · 22 + 23 =
= x3 + 6x2 + 12x + 8
2(3x − 2)3 = (3x)3 − 3 · (3x)2 · 2 + 3 · 3x · 22 − 23 =
= 27x 3 − 54x2 + 36x − 8
3(2x + 5)3 = (2x)3 + 3 · (2x)2 ·5 + 3 · 2x · 52 + 53 =
= 8x3 + 60 x2 + 150 x + 125
Producto de binomios con término común[editar]
Dos binomios con un término común[editar]
Para efectuar un producto de dos binomios con término común se tiene que identificar el término común, en este caso x, luego se aplica la fórmula siguiente:
Ejemplo:
Tres binomios con término común
Fórmula general:
Binomios con término común
Fórmula general:
xn + (suma de términos no comunes agrupados de uno en uno)xn-1 + (suma de términos no comunes agrupados de dos en dos)xn-2 +… + (producto del número de términos)
Producto de dos binomios conjugados[ed
Dos binomios conjugados se diferencian solo en el signo de la operación. Para su multiplicación basta elevar los monomios al cuadrado y restarlos (obviamente, un término conserva el signo negativo), con lo cual se obtiene una diferencia de cuadrados.
Ejemplo:
Agrupando términos:
A este producto notable también se le conoce como suma por la diferencia.
- En el caso ,n 1 aparecen polinomios.
Cuadrado de un polinomio[editar]
Para elevar un polinomio de cualquier cantidad de términos se suman los cuadrados de cada término individual y luego se añade el doble de la suma de los productos de cada posible par de términos.
Ejemplo:
Multiplicando los monomios:
Agrupando términos:
Luego:
- Romper moldes
- .n 2